Montage- und Betriebsanleitung / Installation and Operating Instructions

HPH - High Performance Holder HPH 3° MULTI

Inhaltsverzeichnis

1	Ziel der Montage- und Betriebsanleitung	4
2	Kontakt	4
3	Sicherheit	5
3.1	Zielgruppe	5
3.2	Bestimmungsgemäße Verwendung	5
3.3	Nicht bestimmungsgemäße Verwendung	5
3.4	Gewährleistung	6
3.5	Allgemeine Warn- und Sicherheitshinweise	6
3.6	Warnungen und Symbole auf dem Hydrodehnspannfutter	11
4	Allgemeine Informationen	13
4.1	Darstellung eines HPH 3° MULTI mit schlanker Kontur	13
4.2	Beschriftung der Betätigungselemente	14
4.3	Benötigte Werkzeuge, Hilfs- und Betriebsstoffe	
4.4	Technische Daten	16
4.5	Prüfung der Spannkraft	19
5	Bedienung des HPH 3° MULTI mit schlanker Kontur	
5.1	Spannen eines Werkzeugs	20
5.2	Entspannen eines Werkzeugs	24
5.3	Maschinenseitige Anpassung der Kühlmittelzuführung nach Form AD/AF	
6	Pflege und Wartung	31
7	Entsorgung	31
Table	of contents	33

1 Ziel der Montage- und Betriebsanleitung

Die vorliegende Montage- und Betriebsanleitung beschreibt die richtige Bedienung des HPH-High Performance Holder 3° MULTI und axialer Werkzeuglängeneinstellung (nachfolgend als "Hydrodehnspannfutter" bezeichnet). Im Detail erhalten Sie Informationen, wie Sie ein Werkzeug mit dem Hydrodehnspannfutter spannen und entspannen können. Zusätzlich werden die wichtigsten Sicherheitshinweise beim Umgang mit dem Hydrodehnspannfutter erläutert.

Nachfolgend erhalten Sie in Kapitel 5 eine detaillierte Beschreibung der einzelnen Funktionen und Handlungsschritte, die zum erfolgreichen Spannen und Entspannen von Werkzeugen mit dem Hydrodehnspannfutter notwendig sind.

Die Montage- und Betriebsanleitung ist Bestandteil des Hydrodehnspannfutters und muss in unmittelbarer Nähe des Hydrodehnspannfutters für das Personal jederzeit zugänglich aufbewahrt werden. Grundvoraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen in dieser Montage- und Betriebsanleitung.

Darüber hinaus gelten die örtlichen Arbeitsschutzvorschriften und allgemeinen Sicherheitsbestimmungen für den Einsatzbereich des Hydrodehnspannfutters. Abbildungen in dieser Montage- und Betriebsanleitung dienen dem grundsätzlichen Verständnis und können von der tatsächlichen Ausführung abweichen.

2 Kontakt

WTE Präzisionstechnik GmbH VETRIEB		FERTIGUNG / REPARATURSERVICE
Adresse	Fischerstr. 19 / Zwingerstrasse D-87435 Kempten	Gewerbegebiet an der B95, Nr.2a D-09427 Ehrenfriedersdorf
Telefon	+49 (0) 831 57012-0	
Fax	+49 (0) 831 57012-30	
E-Mail	info@wte-tools.de	info@wte-tools.de
Internet	www.wte-tools.de	www.wte-tools.de

3 Sicherheit

3.1 Zielgruppe

Die Bedienung des Hydrodehnspannfutters darf nur durch ausgebildetes, autorisiertes und zuverlässiges Fachpersonal erfolgen. Das Fachpersonal muss Gefahren erkennen und vermeiden können und muss hierzu dieses Dokument vor der Verwendung des Hydrodehnspannfutters gelesen und verstanden haben.

Die Unfallverhütungsvorschriften, Sicherheitsbestimmungen und -vorschriften des Maschinenherstellers sind dem Fachpersonal bekannt und vom Fachpersonal bei der Bedienung des Hydrodehnspannfutters zu beachten und einzuhalten.

3.2 Bestimmungsgemäße Verwendung

- Das Hydrodehnspannfutter dient ausschließlich zum Aufnehmen und Spannen von Werkzeugen auf Maschinen für die Zerspanung in industrieller Anwendung.
- Das Hydrodehnspannfutter ist speziell zum hydraulischen Spannen von rotierenden Werkzeugen auf Werkzeugmaschinen für manuellen und automatischen Werkzeugwechsel konzipiert.
- Das Hydrodehnspannfutter darf nur verwendet werden, wenn die Einhaltung aller Angaben dieser Montage- und Betriebsanleitung gewährleistet ist.
- Das Abweichen der Vorschriften kann zu Verletzungen oder Beschädigungen von Maschinen und Zubehör führen, für die WTE keine Haftung übernimmt.

3.3 Nicht bestimmungsgemäße Verwendung

- Das Hydrodehnspannfutter darf nur entsprechend der technischen Daten eingesetzt werden (siehe Kapitel 4.4).
- Das Hydrodehnspannfutter darf nicht auf einem Schrumpfgerät erwärmt werden. Es ist nicht für den Schrumpfprozess und den dabei vorkommenden Temperaturen ausgelegt.
- Das Hydrodehnspannfutter darf nicht für die Werkstückspannung eingesetzt werden.
- Das Hydrodehnspannfutter darf nicht verändert und für andere Anwendungen erschlossen werden.
- Zusätzliche Bohrungen, Gewinde und Anbauten dürfen nur nach schriftlicher Genehmigung durch WTE angebracht werden.

- Im Falle von eigenmächtigen Veränderungen am Hydrodehnspannfutter oder einer nicht bestimmungsgemäßen Verwendung des Hydrodehnspannfutters, erlischt der Gewährleistungsanspruch gegenüber WTE.
- Für Schäden aus einer nicht bestimmungsgemäßen Verwendung haftet der Hersteller nicht.

3.4 Gewährleistung

Die Gewährleistung gilt für einen Zeitraum von **24 Monaten** und beginnt mit dem Lieferdatum ab Werk bei bestimmungsgemäßer Verwendung und unter Einhaltung der Inhalte der Montage- und Betriebsanleitung. Die Gewährleistung beschränkt sich auf den 1-Schicht-Betrieb.

Das Hydrodehnspannfutter inklusive all seiner Komponenten und Zubehörteile darf nicht verändert und für unbefugte Anwendungen erschlossen werden. Jegliche Veränderung des Hydrodehnspannfutters oder unbefugte Verwendung führt zum Erlöschen des Gewährleistungsanspruchs gegenüber WTE.

WTE lehnt ausdrücklich jegliche Haftung für Schäden durch schadhafte Werkzeuge oder schadhafte Maschinenteile ab. Verschleißteile unterliegen nicht der Gewährleistung.

3.5 Allgemeine Warn- und Sicherheitshinweise

WARNUNG

Gefahr durch unausgebildetes und unautorisiertes Personal!

Das Spannen von Werkzeugen und Einbringen in eine Werkzeugmaschine kann durch unausgebildetes und unautorisiertes Personal zu gefährlichen Situationen führen.

- → Ausschließlich ausgebildetes, autorisiertes und zuverlässiges Fachpersonal darf Werkzeuge spannen und in eine Werkzeugmaschine einbringen.
- → Die technischen Daten der Maschinenschnittstelle sind vom Fachpersonal zu beachten.
- → Das Fachpersonal muss Gefahren erkennen und vermeiden können.

Missachten der technischen Daten oder Fehlbedienung!

Das Missachten der technischen Daten oder eine Fehlbedienung kann zu schweren Verletzungen des Bedieners und zu Sachschaden führen.

- → Die technischen Daten und deren Einhaltung in Kapitel 4.4 beachten.
- → Beim Spannvorgang die Spannschraube bis zum Anschlag unter Einhaltung der Mindestumdrehungen eindrehen.
- → Die vorgeschriebenen Werte der Mindesteinspanntiefe einhalten.
- → Die vorgeschriebenen Grenzdrehzahlen der maschinenseitigen Schnittstelle einhalten.
- → Die Grenzbelastbarkeit der maschinenseitigen Schnittstelle nach zum Beispiel VDMA 34181 beachten.
- → Treten Unregelmäßigkeiten während der Bedienung auf, das Hydrodehnspannfutter aus Sicherheitsgründen nicht mehr einsetzen und zur Überprüfung oder zur Reparatur an WTE senden.

3.5.1 Gefahren durch Hitze- und Wärmeentwicklung

WARNUNG

Schrumpfen oder Erhitzen des Hydrodehnspannfutters kann zu Verletzungen führen und Maschinen und Zubehör beschädigen!

Durch Schrumpfen oder Erhitzen kann sich das Hydrodehnspannfutter verformen oder explosionsartig platzen. Dabei können heißes Öl, Öldämpfe und Metallsplitter geschossartig umherfliegen und zu schweren Verletzungen des Bedieners führen und Maschinen und Zubehör beschädigen.

→ Das Hydrodehnspannfutter nicht schrumpfen oder über die angegebene Betriebstemperatur erhitzen.

Entspannen bei zu hoher Spannfuttertemperatur!

Durch das Entspannen bei zu hoher Spannfuttertemperatur können sich Teile des Hydrodehnspannfutters geschossartig lösen und heißes Öl austreten. Dies kann zu schweren Verletzungen führen und Maschinen und Zubehör beschädigen.

→ Die Spannschraube des Hydrodehnspannfutters ausschließlich bei Raumtemperatur betätigen.

HINWEIS

Spannen ohne Werkzeug!

Das Spannen ohne Werkzeug kann zur Beschädigung des Hydrodehnspannfutters führen.

→ Das Hydrodehnspannfutter nicht ohne Werkzeug spannen.

3.5.2 Mechanische Gefahren

WARNUNG

Spannen und Entspannen bei laufender Maschine!

Durch das Spannen und Entspannen des Hydrodehnspannfutters bei laufender Maschine können schwere Verletzungen des Bedieners verursacht werden.

→ Das Hydrodehnspannfutter nur außerhalb und bei stillstehender Maschine betätigen.

Verwendung langer, auskragender und schwerer Werkzeuge oder Verlängerungen!

Bei Verwendung langer, auskragender und schwerer Werkzeuge oder beim Einsatz von Verlängerungen kann sich das Werkzeug oder Teile der Werkzeugkombination geschossartig lösen und zu schweren Verletzungen führen.

- → Bei langen, auskragenden und schweren Werkzeugen oder beim Einsatz von Verlängerungen die Drehzahl gemäß den individuellen Vorgaben und in Verantwortung des Anwenders reduzieren.
- → Die individuell festzulegende Maximallänge und die Wuchtgüte des Gesamtsystems auch bei Verwendung von Verlängerungen beachten.
- → Bei Sonderausführungen müssen eventuell abweichende Zeichnungsangaben berücksichtigt werden.
- → Die Grenzbelastbarkeit der maschinenseitigen Schnittstelle beachten.

VORSICHT

Scharfe Schneidkanten am Werkzeug!

Scharfe Schneidkanten können Schnittverletzungen verursachen.

→ Beim Werkzeugwechsel Schutzhandschuhe tragen.

HINWEIS

Werkzeuglängeneinstellung bei gespanntem Werkzeug!

Die Durchführung einer axialen oder radialen Werkzeuglängeneinstellung des Werkzeugs bei vollständig gespanntem Werkzeug führt zur Beschädigung des Hydrodehnspannfutters.

→ Bei gespanntem Werkzeug keine Werkzeuglängeneinstellung durchführen.

HINWEIS

Einsatz von Schäften mit Ausnehmungen!

Der Einsatz von Schäften mit Form B und E (DIN 1835) oder Schäfte mit Form HB und HE (DIN 6535) kann zu ungenauem Rundlauf und ungenauer Wuchtqüte des Gesamtsystems führen.

→ Ausschließlich Schäfte der Form A einsetzen oder das Gesamtsystem feinwuchten.

HINWEIS

Beschädigung der farblich versiegelten Entlüftungsschraube!

Bei Beschädigung der farblich versiegelten Entlüftungsschraube ist das Hydrodehnspannfutter nicht mehr funktionstüchtig und darf umgehend nicht mehr zum Einsatz kommen.

- → Nicht die farblich versiegelte Entlüftungsschraube beschädigen oder öffnen.
- → Bei beschädigter Entlüftungsschraube, das Hydrodehnspannfutter aus Sicherheitsgründen nicht mehr einsetzen.
- → Bei Beschädigung zur Überprüfung und Reparatur an WTE senden.

HINWEIS

Verschleiß durch maschinellen Schraubendreher beim Spannen der Spannschraube!

Der Einsatz eines maschinellen Schraubendrehers beim Spannen der Spannschraube führt zu einem erhöhten Verschleiß des Spannsatzes.

→ Die Spannschraube nur manuell spannen.

3.6 Warnungen und Symbole auf dem Hydrodehnspannfutter

WARNUNG

Schrumpfen oder Erhitzen des Hydrodehnspannfutters kann zu Verletzungen führen und Maschinen und Zubehör beschädigen!

Durch Schrumpfen oder Erhitzen kann sich das Hydrodehnspannfutter verformen oder explosionsartig platzen. Dabei können heißes Öl, Öldämpfe und Metallsplitter geschossartig umherfliegen und zu schweren Verletzungen des Bedieners führen und Maschinen und Zubehör beschädigen.

→ Das Hydrodehnspannfutter nicht schrumpfen oder über die angegebene Betriebstemperatur erhitzen.

Verbotssymbol:

Das Verbotssymbol auf dem Hydrodehnspannfutter weist ausdrücklich darauf hin, das Hydrodehnspannfutter nicht zu schrumpfen oder zu erhitzen.

Abb. 1: Verbotssymbol auf dem Hydrodehnspannfutter

Das Hydrodehnspannfutter ist mit diesem Warnhinweis beschriftet.

Abb. 2: Warnhinweis auf dem Hydrodehnspannfutter

Abb. 3: Position von Verbotssymbol und Warnhinweis auf dem Hydrodehnspannfutter

4 Allgemeine Informationen

4.1 Darstellung eines HPH 3° MULTI mit schlanker Kontur

Abb. 4: Einzelne Komponenten des HPH 3° MULTI mit schlanker Kontur

Legende

- 1 | Aufnahmebohrung
- 2 | Spannschraube
- 3 | Farblich versiegelte Entlüftungsschraube
- 4 | Kegel des Hydrodehnspannfutters
- 1 | Auskraglänge

DE

Abb. 5: Sicht von unten auf das HPH 3° MULTI mit schlanker Kontur

Legende

1 | Anschlagschraube zur axialen Werkzeuglängeneinstellung

4.2 Beschriftung der Betätigungselemente

Abb. 6: Beschriftung zur Prüfung der Spannkraft: Drei mögliche Positionen auf dem Spannfutter

Abb. 7: Drehrichtungsangabe zum Lösen und Spannen des Wekzeugs

4.3 Benötigte Werkzeuge, Hilfs- und Betriebsstoffe

- Innensechskantschlüssel für die Anschlagschraube zur axialen Werkzeuglängeneinstellung.
- Innensechskantschlüssel für die Spannschraube.

Legende

- 1 | + Werkzeug spannen (im Uhrzeigersinn)
- 2 | Werkzeug lösen (gegen Uhrzeigersinn)

4.4 Technische Daten

Missachten der technischen Daten!

Das Missachten der technischen Daten kann zu schweren Verletzungen des Bedieners und zu Sachschaden führen.

- → Die technischen Daten und deren Einhaltung in Kapitel 4.4 beachten.
- → Beim Spannvorgang die Spannschraube bis zum Anschlag unter Einhaltung der Mindestumdrehungen eindrehen.
- → Die vorgeschriebenen Werte der Mindesteinspanntiefe einhalten.
- → Die vorgeschriebenen Grenzdrehzahlen der maschinenseitigen Schnittstelle einhalten.
- → Die Grenzbelastbarkeit der maschinenseitigen Schnittstelle nach zum Beispiel VDMA 34181 beachten.
- → Treten Unregelmäßigkeiten während der Bedienung auf, das Hydrodehnspannfutter aus Sicherheitsgründen nicht mehr einsetzen und zur Überprüfung oder zur Reparatur an WTE senden.
- · Allgemeine technische Daten:
 - Werkstoff 1.600 N/mm².
 - Härte 52+2 HRc
 - Halter standardmäßig gewuchtet.
 - Betriebstemperatur: 20 bis 120 °C.
 - Kühlmitteldruck maximal 80 bar.
 - Maximaler Verstellweg 10 mm.
 - Mit und ohne Reduzierhülsen können Zylinderschäfte mit Schafttoleranz h6 nach DIN 1835 Form A, B, E und nach DIN 6535 Form HA, HB und HE gespannt werden.
 - Angabe zur Prüfung der Spannkraft (siehe Kapitel 4.2 und 4.5).

• Richtwerte der Grenzdrehzahlen von Hydrodehnspannfutter mit HSK-Schnittstelle

Nenngröße HSK	Max. zulässige Grenzdrehzahl [min ⁻¹]
32	37.500
40	37.500
50	30.000
63	24.000
80	20.000
100	16.000

Tab. 1: Richtwerte der Grenzdrehzahlen

• Technische Daten [mm]

Spanndurchmesser [mm]	Mindesteinspanntiefe [mm]	Zul. Übertragbares Drehmo- ment bei Schaft Kleinstmaß h6 [Nm]	Max. Drehzahl [min-1]	
			$l1 \leq 125 \; mm$	l1 > 125 mm
3	12	3		
4	16	6		
5	20	10		
6	27	20		
7	27	20	40.000	20.000
8	27	35	40.000	20.000
9	31	50		
10	31	65		
11	31	85		
12	36	110		
13	36	110		
14	36	120		
16	39	160	20.000	10.000
18	39	200		
20	41	260		

Tab. 2: Technische Daten [mm]

• Technische Daten [Zoll]

Spanndurchmesser [Zoll]	Mindesteinspanntiefe [mm]	Zul. Übertragbares Drehmo- ment bei Schaft Kleinstmaß h6 [Nm]	Max. Drehzahl [min-1]	
			$l1 \leq 125 \; mm$	l1 > 125 mm
1/8	12	3		
3/16	16	8		
1/4	27	20		
5/16	27	35	40.000	20.000
3/8	31	65		
7/16	31	85		
1/2	36	110		
5/8	39	150	20.000	10,000
3/4	41	260	20.000	10.000

Tab. 3: Technische Daten [ZoII]

4.5 Prüfung der Spannkraft

Die Mindestumdrehungen werden auf dem Hydrodehnspannfutter angegeben (siehe Kapitel 4.2) und stellen eine einfache und zuverlässige Prüfung der Spannkraft dar. Damit wird sichergestellt, dass bei jedem Spannvorgang das zulässige übertragbare Drehmoment erreicht wird. Die Mindestumdrehungen sind die Anzahl der Umdrehungen der Spannschraube, die ab dem Grippunkt des Schaftes bis zum Anschlag der Spannschraube erreicht werden müssen. Der Grippunkt ist die Position der Spannschraube, bei der sich der Werkzeugschaft mit zwei Fingern nicht mehr drehen oder aus der Aufnahmebohrung herausziehen lässt.

Bedienung des HPH 3° MULTI mit schlanker Kontur

5.1 Spannen eines Werkzeugs

INFORMATION

Die Betätigung der Anschlagschraube des Dehnspannfutters ist beidseitig möglich. Das Dehnspannfutter kann je nach Ausführung entweder axial oder radial eingestellt werden.

WARNUNG

Schrumpfen oder Erhitzen des Hydrodehnspannfutters kann zu Verletzungen führen und Maschinen und Zubehör beschädigen!

Durch Schrumpfen oder Erhitzen kann sich das Hydrodehnspannfutter verformen oder explosionsartig platzen. Dabei können heißes Öl, Öldämpfe und Metallsplitter geschossartig umherfliegen und zu schweren Verletzungen des Bedieners führen und Maschinen und Zubehör beschädigen.

→ Das Hydrodehnspannfutter nicht schrumpfen oder über die angegebene Betriebstemperatur erhitzen.

WARNUNG

Spannen und Entspannen bei laufender Maschine!

Durch das Spannen und Entspannen des Hydrodehnspannfutters bei laufender Maschine können schwere Verletzungen des Bedieners verursacht werden.

→ Das Hydrodehnspannfutter nur außerhalb und bei stillstehender Maschine betätigen.

Scharfe Schneidkanten am Werkzeug!


Scharfe Schneidkanten können Schnittverletzungen verursachen.

→ Beim Werkzeugwechsel Schutzhandschuhe tragen.

Abb. 8: Hydrodehnspannfutter und Werkzeug reinigen

INFORMATION

1. Reinigen Sie die Aufnahmebohrung und den Werkzeugschaft (1).

Schieben Sie das Werkzeug mit dem Schaft voraus bis zur Anschlagschraube in die Aufnahmebohrung des Hydrodehnspannfutters.

Abb. 9: Werkzeug einschieben

HINWEIS

Beschädigung durch Nichteinhalten der Mindesteinspanntiefe beim Hydrodehnspannfutter!

→ Die vorgeschriebenen Werte der Mindesteinspanntiefe einhalten (siehe Tab. 2: Technische Daten [mm] oder Tab. 3: Technische Daten [ZoII]).

HINWEIS

Beschädigung durch Werkzeuglängeneinstellung bei gespanntem Werkzeug!

→ Bei gespanntem Werkzeug keine Werkzeuglängeneinstellung durchführen.

Abb. 10: Werkzeuglänge einstellen

Die Anschlagschraube zur axialen Werkzeuglängeneinstellung ist nicht gegen Herausfallen gesichert. Der angegebene Verstellbereich kann nicht überschritten werden

Die Betätigung der Anschlagschraube zur axialen Werkzeuglängeneinstellung ist beidseitig möglich.

3. Stellen Sie das Hydrodehnspannfutter auf die Werkzeuglänge ein, hierzu drehen Sie die Anschlagschraube zur axialen Werkzeuglängeneinstellung mit Hilfe eines passenden Innensechskantschlüssels mit Quergriff.

WARNUNG

Unzureichendes Spannen bis zum Anschlag und Nichteinhaltung der Mindestumdrehungen!

Durch unzureichendes Spannen bis zum Anschlag und Nichteinhaltung der Mindestumdrehungen kann sich das Werkstück geschossartig lösen und zu schweren Verletzungen führen.

→ Beim Spannvorgang die Spannschraube bis zum Anschlag unter der Einhaltung der Mindestumdrehungen eindrehen (siehe Kapitel 4.4 Technische Daten).

INFORMATION

- Die Spannschraube ist gegen Herausfallen nicht gesichert!

 Achten Sie darauf, dass die Spannschraube schmutzfrei ist.
- Drehen Sie die Spannschraube mit Hilfe eines Innensechskantschlüssels mit Quergriff bis zum Anschlag (siehe Abb. 11: Werkzeug spannen).
- Stellen Sie einen Drehmomentschlüssel auf das Anzugsdrehmoment von 7 Nm ein.
- Ziehen Sie die Spannschraube mit Hilfe des Drehmomentschlüssels auf Anschlag fest.

Abb. 11: Werkzeug spannen

ERGEBNIS

Das Werkzeug ist nun vollständig im Hydrodehnspannfutter gespannt und kann eingesetzt werden.

5.2 Entspannen eines Werkzeugs

WARNUNG

Entspannen bei zu hoher Spannfuttertemperatur!

Durch das Entspannen bei zu hoher Spannfuttertemperatur können sich Teile des Hydrodehnspannfutters geschossartig lösen und heißes Öl austreten. Dies kann zu schweren Verletzungen führen und Maschinen und Zubehör beschädigen.

→ Die Spannschraube des Hydrodehnspannfutters ausschließlich bei Raumtemperatur betätigen.

INICODMATION

 Lösen Sie die Spannschraube mit 3 bis 7 Umdrehungen mit Hilfe des passenden Innensechskantschlüssels mit Quergriff.

Abb. 12: Spannschraube lösen

Entnehmen Sie das Werkzeug aus der Aufnahmebohrung des Hydrodehnspannfutters.

Abb. 13: Werkzeug entnehmen

ERGEBNIS

 $\sqrt{}$

Das Werkzeug ist nun entspannt und gelöst.

DE

5.3 Maschinenseitige Anpassung der Kühlmittelzuführung nach Form AD/AF

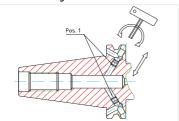
WARNUNG

Verbrennungsgefahr durch heißen Gewindestiftbereich!

Beim Erwärmen und Herausdrehen der Gewindestifte können schwere Verbrennungen und Verletzungen entstehen.

- → Beim Erwärmen und Herausdrehen der Gewindestifte immer ISO-Schutzhandschuhe tragen.
- → Nach dem Erwärmen warten, bis der Gewindestiftbereich abgekühlt ist.

Das System der Kühlmittelzuführung bei Werkzeughaltern nach DIN ISO 7388 erlaubt es, die gängigen Formen der Kühlmittelversorgung in einem maschinenseitigen Grundkörper nach Form AD/AF zu kombinieren.


Das System ermöglicht die Kombination folgender Ausführungen:

- Form AD: zentrale Kühlmittelzuführung über durchgehende Bohrung (Grundeinstellung)
- Form AF: zentrale Kühlmittelzuführung über Bund

Um die Werkzeughalter auf die Art der Kühlmittelversorgung der Maschine anzupassen genügt es, die Position zweier Gewindestifte zu ändern. Die Gewindestifte (mit Schraubensicherung gesichert) dichten jeweils die Bohrung zur alternativen Kühlmittelzufuhr ab. Für die Umstellung steht Ihnen auch der WTE Kundenservice zur Verfügung.

5.3.1 Grundeinstellung Form AD bzw. JD nach DIN ISO 7388

Falls keine andere Bestellung vorliegt, werden die Werkzeughalter in **Form AD** ausgeliefert.

Abb. 14: Grundeinstellung der Kühlmittelzuführung

5.3.2 Nach Form AF bzw. JF umstellen

Umstellung von der Grundeinstellung nach Kühlmittelzuführung Form AF.

WARNUNG

Verbrennungsgefahr durch heißen Gewindestiftbereich!

<u>\</u>

Beim Erwärmen und Herausdrehen der Gewindestifte können schwere Verbrennungen und Verletzungen entstehen.

- → Beim Erwärmen und Herausdrehen der Gewindestifte immer ISO-Schutzhandschuhe tragen.
- → Nach dem Erwärmen warten, bis der Gewindestiftbereich abgekühlt ist.

Explosionsgefahr beim Erwärmen der Hydrodehnelemente!

Beim Erwärmen des Gewindestiftbereichs kann sich der Dehnspannbereich sowie die Bereiche der Druckeinleitung erhitzen und das Hydrodehnspannfutter verformen oder explosionsartig platzen. Dabei können heißes Öl oder Öldämpfe austreten und Metallsplitter geschossartig umherfliegen und schwere Verletzungen des Bedieners verursachen.

- → Ausschließlich den Gewindestiftbereich erwärmen.
- → Die Erwärmung nur im entspannten Zustand der Hydraulik durchführen.
- → Die Umstellung beim WTE Kundenservice veranlassen.
 - 1. Stellen Sie die Kühlung des Hydraulikbereichs sicher.
 - 2. Erwärmen Sie die Gewindestifte bzw. den Gewindestiftbereich, bis sich die Gewindestifte herausdrehen lassen.

WARNUNG

Verbrennungsgefahr durch heißen Gewindestiftbereich!

- → ISO-Handschuhe tragen und warten, bis der Gewindestiftbereich abgekühlt ist.
- Drehen Sie die Gewindestifte mit einem Innensechskantschlüssel SW 2,5 heraus.
- Entfernen Sie die Klebstoffreste an den Gewindestiften und Gewindebohrungen.

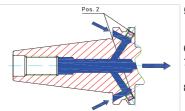


Abb. 15: Kühlmittelzuführung Form AF/JF

- Schrauben Sie in den abgekühlten Werkzeughalter an "Pos. 2" die Gewindestifte mit Schraubensicherung (Klebstoff) mittelfest ein (siehe Abb. 15: Kühlmittelzuführung Form AF/JF).
- 6. Entfernen Sie eventuelle Klebstoffreste.
- Kontrollieren Sie nach der Aushärtezeit des Klebers die Gewindestifte auf festen Sitz und wuchten Sie den Werkzeughalter gegebenenfalls nach.
- Verwenden Sie für die maschinenseitige Abdichtung des Werkzeughalters einen Anzugbolzen mit Kühlmittelbohrung.

ERGEBNIS

Die Kühlmittelzuführung ist nach Form AF/JF umgestellt.

5.3.3 Nach Form AD bzw. JD umstellen

Umstellung der Kühlmittelzuführung von der Form AF nach Form AD.

WARNUNG

Verbrennungsgefahr durch heißen Gewindestiftbereich!

Beim Erwärmen und Herausdrehen der Gewindestifte können schwere Verbrennungen und Verletzungen entstehen.

- steher

 → Be
- ightharpoonup Beim Erwärmen und Herausdrehen der Gewindestifte immer ISO-Schutzhandschuhe tragen.
- → Nach dem Erwärmen warten, bis der Gewindestiftbereich abgekühlt ist.

1. Erwärmen Sie die Gewindestifte bzw. den Gewindestiftbereich, bis sich die Gewindestifte herausdrehen lassen.

WARNUNG

Verbrennungsgefahr durch heißen Gewindestiftbereich!

- → ISO-Handschuhe tragen und warten, bis der Gewindestiftbereich abgekühlt ist.
- Drehen Sie die Gewindestifte mit einem Innensechskantschlüssel SW 2,5 heraus.
- Entfernen Sie die Klebstoffreste an den Gewindestiften und Gewindebohrungen.
- Schrauben Sie in den abgekühlten Werkzeughalter an "Pos. 1" die Gewindestifte mit Schraubensicherung (Klebstoff) mittelfest ein (siehe Abb. 16: Kühlmittelzuführung Form AD/JD).
- 5. Entfernen Sie eventuelle Klebstoffreste.
- Kontrollieren Sie nach Aushärtezeit des Klebers die Gewindestifte auf festen Sitz und wuchten Sie den Werkzeughalter gegebenenfalls nach.
- Verwenden Sie für die maschinenseitige Abdichtung des Werkzeughalters einen Anzugbolzen mit Kühlmittelbohrung.

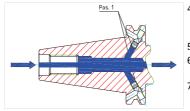


Abb. 16: Kühlmittelzuführung Form AD/JD

ERGEBNIS

Die Kühlmittelzuführung ist nach Form AD/JD umgestellt.

6 Pflege und Wartung

- Schützen Sie das Hydrodehnspannfutter bei der Lagerung vor Korrosion.
- Achten Sie darauf, dass das Hydrodehnspannfutter im entspannten Zustand gelagert wird.
- Entsprechend den Nutzungs- und Umgebungsbedingungen, sowie bei häufigem Spannen, ist die Spannschraube in regelmäßigen Abständen zu reinigen und neu zu schmieren.
- Bei häufigem Spannen ist die Anschlagschraube zur axialen Werkzeuglängeneinstellung in regelmäßigen Abständen zu reinigen und zu schmieren.
- Reparaturen dürfen ausschließlich bei WTE durchgeführt werden.
- Hinweise für das Reinigen in einer Waschanlage:
 - Das Hydrodehnspannfutter ausschließlich im entspannten Zustand reinigen.
 - Die Spannschraube darf nur bei Raumtemperatur gespannt oder entspannt werden.
 - Die Waschtemperatur darf höchstens 80 °C betragen.
 - Nach der Reinigung ist die Spannschraube neu einzufetten.

7 Entsorgung

Nachdem das Gebrauchsende des Hydrodehnspannfutters erreicht ist, muss das Hydrodehnspannfutter einer umweltgerechten Entsorgung zugeführt werden. Das Hydrodehnspannfutter kann zur fachgerechten Entsorgung auch an WTE gesendet werden.

Table of contents

1	Purpose of the installation and operating instructions	34
2	Contact	34
3	Safety	35
3.1	Target group	
3.2	Correct use	35
3.3	Incorrect use	35
3.4	Warranty	36
3.5	General warnings and safety instructions	36
3.6	Warnings and symbols on the hydraulic chuck	41
4	General information	43
4.1	Illustration of an HPH 3° MULTI with slender contour	43
4.2	Marking of the actuating elements	44
4.3	Tools and materials required	45
4.4	Technical data	46
4.5	Checking the clamping force	49
5	Operation of the HPH 3° MULTI with slender contour	50
5.1	Clamping a tool	50
5.2	Unclamping a tool	54
5.3	Machine-side adaptation of the coolant supply to Form AD/AF	56
6	Care and maintenance	61
7	Disposal	61

1 Purpose of the installation and operating instructions

The present Installation and Operating Instructions describe the proper operation of the HPH-High Performance Holder 3° MULTI and axial tool length adjustment (hereinafter referred to as "hydraulic chuck"). You will find detailed information on how to clamp and unclamp a tool using the hydraulic chuck. In addition, the most important safety instructions on handling the hydraulic chuck are explained.

Section 5 contains a detailed description of the individual functions and actions necessary to successfully clamp and unclamp tools using the hydraulic chuck.

The installation and operating instructions form an integral part of the hydraulic chuck and must be kept in the immediate vicinity of the hydraulic chuck where it is accessible to the personnel at all times. A basic precondition for safe working is compliance with all the safety precautions and instructions for working given in these installation and operating instructions.

The local safety at work regulations and the general safety regulations for the field of application of the hydraulic chuck must also be observed. Illustrations in these installation and operating instructions are provided for general understanding and may differ from the actual design.

2 Contact

WTE Präzisionstechnik Gmb	H DISTRIBUTION	Repair service
Address	Fischerstr. 19 / Zwingerstrasse D-87435 Kempten, GERMANY	Gewerbegebiet an der B95, Nr.2a D-09427 Ehrenfriedersdorf, GERMANY
Telephone	+49 (0) 831 57012-0	
Fax	+49 (0) 831 57012-30	
E-Mail	info@wte-tools.de	info@wte-tools.de
Internet	www.wte-tools.de	www.wte-tools.de

3 Safety

3.1 Target group

The hydraulic chuck may only be used by trained, authorised and dependable specialist personnel. The specialist personnel must be able to recognise and avoid hazards and for this purpose must have read this document before using the hydraulic chuck.

The specialist personnel is familiar with the health and safety regulations, safety stipulations and instructions from the machine manufacturer, which must be followed and observed during operation of the hydraulic chuck.

3.2 Correct use

- The hydraulic chuck is intended exclusively for holding and clamping tools on cutting machines in industrial applications.
- The hydraulic chuck has been specially designed for hydraulic clamping of rotating tools on machine tools for manual
 and automatic tool changing.
- The hydraulic chuck may only be used when observance of all the instructions given in this manual is assured.
- Failure to observe these instruction can result in injuries or damage to machines and accessories for which WTE assumes
 no liability.

3.3 Incorrect use

- The hydraulic chuck may only be used in accordance with the technical data (see section 4.4).
- The hydraulic chuck must not be heated on a shrink unit. It is not designed for the shrinking process and the associated temperatures.
- The hydraulic chuck must not be used for workpiece clamping.
- The hydraulic chuck must not be modified and used for other applications.
- Additional bores, threads and attachment parts may only be attached with the written approval of WTE.
- Unauthorised modifications to the hydraulic chuck or incorrect use of the hydraulic chuck will void all and any warranty claims against WTE.

• The manufacturer assumes no liability for accidents or damage resulting from use for other than the correct use.

3.4 Warranty

The warranty period is **24 months** from the date of delivery ex works on condition of use for the correct use and observance of the contents of the installation and operating instructions. The warranty is limited to 1-shift operation.

The hydraulic chuck including all its components and accessories must not be modified or used for non-authorised applications. Any modification to the hydraulic chuck or any unauthorised use will void all and any warranty claims against WTE. WTE expressly declines any liability for accidents or damage resulting from the use of damaged tools or damaged machine parts. Wear parts are not covered by the warranty.

3.5 General warnings and safety instructions

WARNING

Danger from use by untrained and unauthorised personnel!

The clamping of tools and their installation on a machine tool by untrained and unauthorised personnel can lead to hazardous situations.

- → Only trained, authorised and dependable specialist personnel may clamp tools and install them on a machine tool.
- → The technical data on the machine connection must be observed by the specialist personnel.
- → The specialist personnel must be able to recognise and avoid hazards.

Failure to observe the technical data or operator error!

Failure to observe the technical data or operator error can result in serious injury to the operator and in machine damage.

- → Observe the technical data given in section 4.4.
- → During clamping, screw in the clamping screw up to the stop, observing the specified minimum number of rotations.
- → Observe the prescribed values for the minimum clamping depth.
- → Observe the prescribed spindle speed limits for the machine-side connection.
- → Observe the maximum load limit for the machine-side connection in accordance with e.g. VDMA 34181.
- → If irregularities occur during operation, do not use the hydraulic chuck further for safety reasons and send it to WTE for inspection or repair.

3.5.1 Dangers from heat development

WARNING

Shrinking or heating the hydraulic chuck can lead to injuries and damage to machines and accessories!

Shrinking or heating can cause the hydraulic chuck to become deformed or to burst explosively. Hot oil, oil vapours and metal slivers can then fly around uncontrolled and cause serious injuries to the operator and cause damage to machines and accessories.

→ Do not shrink the hydraulic chuck or heat it above the specified operating temperature.

Unclamping at excessive clamping chuck temperatures!

Unclamping at excessive clamping chuck temperatures can cause parts of the hydraulic chuck to fly off uncontrolled, allowing hot oil to escape. This can lead to serious injuries and cause damage to machines and accessories.

→ Actuate the clamping screw of the hydraulic chuck only at room temperature.

NOTICE

Clamping without tool!

Clamping without tool can result in damage to the hydraulic chuck.

→ Do not clamp the hydraulic chuck without tool.

3.5.2 Mechanical hazards

WARNING

Clamping and unclamping with running machine!

Clamping and unclamping the hydraulic chuck with the machine running may result in serious injuries to the operator.

→ Actuate the hydraulic chuck only off the machine and with the machine at a standstill.

Use of long, projecting and heavy tools or extensions!

Use of long, projecting and heavy tools or with extensions can cause the tool or parts of the tool combination to fly off like a projectile and cause serious injuries.

- → When using long, projecting and heavy tools or with extensions, reduce the spindle speed according to the individual specifications and at the responsibility of the operator.
- → Observe also the individually specified maximum length and balancing value of the whole system when using extensions.
- → With special designs, deviating drawing specifications may have to be taken into consideration.
- → Observe the maximum load limit for the machine-side connection.

CAUTION

Sharp cutting edges on the tool!

Sharp cutting edges may cause cutting injuries.

→ Wear protective gloves when changing tools.

NOTICE

Tool length adjustment with the tool clamped!

Performing an axial or radial tool length adjustment while the tool is completely clamped will result in damage to the hydraulic chuck.

→ Do not change the tool length adjustment as long as the tool is clamped.

NOTICE

Use of shanks with recesses!

Use of shanks with Form B and E (DIN 1835) or shanks with HB and HE (DIN 6535) can result in radial run-out errors and inaccurate balancing value of the whole system.

→ Use only shanks with Form A or fine balance the whole system.

NOTICE

Damage to the paint-sealed bleeder screw!

In the event of damage to the paint-sealed bleeder screw, the hydraulic chuck is no longer functional and must be taken out of operation immediately.

- → Do not damage or loosen the paint-sealed bleeder screw.
- → If the bleeder screw is damaged, the hydraulic chuck must not be used for safety reasons.
- → In the event of damage, send the hydraulic chuck to WTE for inspection and repair.

NOTICE

Wear due to use of a power screwdriver for tightening the clamping screw!

Use of a power screwdriver for tightening the clamping screw will result in increased wear of the clamping set.

→ Tighten the clamping screw only manually.

3.6 Warnings and symbols on the hydraulic chuck

WARNING

Shrinking or heating the hydraulic chuck can lead to injuries and damage to machines and accessories!

Shrinking or heating can cause the hydraulic chuck to become deformed or to burst explosively. Hot oil, oil vapours and metal slivers can then fly around uncontrolled and cause serious injuries to the operator and cause damage to machines and accessories.

Do not shrink the hydraulic chuck or heat it above the specified operating temperature.

Prohibition symbol:

The prohibition symbol on the hydraulic chuck indicates expressly that the hydraulic chuck must not be shrunk or heated.

Fig. 1: Prohibition symbol on the hydraulic chuck

The hydraulic chuck bears this warning sign.

Fig. 2: Warning sign on the hydraulic chuck

Fig. 3: Position of prohibition symbol and warning sign on the hydraulic chuck

4 General information

4.1 Illustration of an HPH 3° MULTI with slender contour

Fig. 4: Individual components of the HPH 3° MULTI with slender contour

Key

- 1 | Location bore
- 2 | Clamping screw
- 3 | Paint-sealed bleeder screw
- 4 | Taper of the hydraulic chuck
- $\mid_1\mid \text{Projection length}$

Fig. 5: View of the HPH 3° MULTI with slender contour from below

Key

1 | Stop screw for axial tool length adjustment

4.2 Marking of the actuating elements

Fig. 6: Marking for checking of the clamping force: Three possible positions on the clamping chuck

Fig. 7: Indication of the direction of rotation for clamping and unclamping the tool

Tools and materials required

- Hex-wrench for the stop screw for axial tool length adjustment.
- Hex-wrench for the clamping screw.

Key

- 1 | + Clamp tool (in clockwise direction)
- 2 | Unclamp tool (in anticlockwise direction)

EN

4.4 Technical data

WARNING

Failure to observe the technical data!

Failure to observe the technical data can result in serious injury to the operator and in machine damage.

- → Observe the technical data given in section 4.4.
- → During clamping, screw in the clamping screw up to the stop, observing the specified minimum number of rotations.
- → Observe the prescribed values for the minimum clamping depth.
- → Observe the prescribed spindle speed limits for the machine-side connection.
- → Observe the maximum load limit for the machine-side connection in accordance with e.g. VDMA 34181.
- → If irregularities occur during operation, do not use the hydraulic chuck further for safety reasons and send it to WTE for inspection or repair.
- General technical data:
 - Material 1600 N/mm².
 - Hardness 52+2 HRc
 - Tool holders balanced as standard.
 - Operating temperature: 20 to 120 °C.
 - Coolant pressure maximum 80 bar.
 - Maximum adjustment path 10 mm.
 - Cylindrical shanks, with and without reducing sleeves, with shank tolerance h6 according to DIN 1835 forms A, B,
 E and according to DIN 6535 forms HA, HB and HE can be clamped.
 - Specification for checking of the clamping force (see sections 4.2 and 4.5).

• Indicative values for the spindle speed limits for hydraulic chucks with HSK connection

Nominal size HSK	Max. permissible spindle speed limit [rpm]		
32	37.500		
40	37.500		
50	30.000		
63	24.000		
80	20.000		
100	16.000		

Tab. 1: Indicative values for spindle speed limits

ΕN

• Technical data [mm]

Clamping diameter [mm]	Minimum clamping depth [mm]	Permissible transferrable torque for shank h6 minimum size [Nm]	Max. spindle speed [rpm]	
			$l1 \leq 125 \; mm$	l1 > 125 mm
3	12	3	40.000	20.000
4	16	6		
5	20	10		
6	27	20		
7	27	20		
8	27	35		
9	31	50		
10	31	65		
11	31	85		
12	36	110		
13	36	110	20.000	10.000
14	36	120		
16	39	160		
18	39	200		
20	41	260		

Tab. 2: Technical data [mm]

• Technical data [inch]

Clamping diameter [inch]	Minimum clamping depth [mm]	Permissible transferrable torque for shank h6 minimum size [Nm]	Max. spindle speed [rpm]	
			$l1 \leq 125 \ mm$	l1 > 125 mm
1/8	12	3	40.000	20.000
3/16	16	8		
1/4	27	20		
5/16	27	35		
3/8	31	65		
7/16	31	85		
1/2	36	110		
5/8	39	150	20.000	10.000
3/4	41	260		

Tab. 3:Technical data [inch]

4.5 Checking the clamping force

The minimum number of rotations are indicated on the hydraulic chuck (see section 4.2) and provide a simple and reliable check of the clamping force. This ensures that the minimum transferable torque is achieved at each clamping operation. The minimum number of rotations are the number of rotations of the clamping screw that have to be achieved from the gripping point of the shank up to the stop of the clamping screw. The gripping point is the position of the clamping screw in which the tool shank can no longer be turned with two fingers or pulled out of the location bore.

5 Operation of the HPH 3° MULTI with slender contour

5.1 Clamping a tool

INFORMATION

Actuation of the stop screw of the hydraulic chuck is possible from both sides. The hydraulic chuck can be adjusted either axially or radially, depending on the design.

WARNING

Shrinking or heating the hydraulic chuck can lead to injuries and damage to machines and accessories!

Shrinking or heating can cause the hydraulic chuck to become deformed or to burst explosively. Hot oil, oil vapours and metal slivers can then fly around uncontrolled and cause serious injuries to the operator and cause damage to machines and accessories.

→ Do not shrink the hydraulic chuck or heat it above the specified operating temperature.

WARNING

Clamping and unclamping with running machine!

Clamping and unclamping the hydraulic chuck with the machine running may result in serious injuries to the operator.

→ Actuate the hydraulic chuck only off the machine and with the machine at a standstill.

Sharp cutting edges on the tool!

Sharp cutting edges may cause cutting injuries.

→ Wear protective gloves when changing tools.

Fig. 8: Cleaning hydraulic chuck and tool

INFORMATIC

1. Clean the location bore and the tool shank (1).

2. Push the tool, shank first, to the stop screw in the location bore in the hydraulic chuck.

Fig. 9: Inserting tool

NOTICE

Damage from failure to observe the minimum clamping depth in the hydraulic chuck!

→ Observe the prescribed values for the minimum clamping depth (see Tab. 2: Technical data [mm]or Tab. 3: Technical data [inch]).

NOTICE

Damage caused by tool length adjustment with clamped tool!

→ Do not change the tool length adjustment as long as the tool is clamped.

$\label{eq:Fig.10:Adjusting} \textbf{Fig. 10:} Adjusting the tool length$

INFORMATION

The stop screw for axial tool length adjustment is not secured to prevent it from falling out. The specified adjusting range cannot be exceeded.

Actuation of the stop screw for axial tool length adjustment is possible from both sides.

Adjust the hydraulic chuck to the tool length by turning the stop screw for the axial tool length adjustment using an appropriate hex-wrench with T-handle.

WARNING

Insufficient clamping up to the stop and failure to observe the minimum number of turns!

Insufficient clamping up to the stop and failure to observe the minimum number of rotations can cause the workpiece to fly off like a projectile and cause serious injuries.

→ During clamping, screw in the clamping screw up to the stop, observing the specified minimum number of rotations (see section 4.4).

Fig. 11: Clamp the tool

INFORMATION

- The clamping screw is not captive!
 Ensure that the clamping screw is clean.
- Turn the clamping screw up to the stop using an hex-wrench with Thandle (see Fig. 11: Clamp the tool).
- 5. Set a torque wrench to a tightening torque of $7\ Nm$.
- **6.** Tighten the clamping screw to the stop with the aid of the torque wrench.

RESULT

The tool is now fully clamped in the hydraulic chuck and can be used.

5.2 Unclamping a tool

WARNING

Unclamping at excessive clamping chuck temperatures!

Unclamping at excessive clamping chuck temperatures can cause parts of the hydraulic chuck to fly off uncontrolled, allowing hot oil to escape. This can lead to serious injuries and cause damage to machines and accessories.

→ Actuate the clamping screw of the hydraulic chuck only at room temperature.

INICODMATION

- The clamping screw is not captive.
- Loosen the clamping screw with 3 to 7 turns using an appropriate hexwrench with T-handle.

Fig. 12: Loosening clamping screw

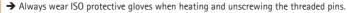
2. Remove the tool from the location bore of the hydraulic chuck.

Fig. 13: Removing tool

RESULT

The tool has been unclamped and released.

5.3 Machine-side adaptation of the coolant supply to Form AD/AF



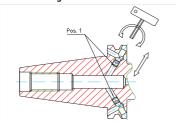
WARNING

7

Risk of burns from hot threaded pin area!

Serious burns and injuries can occur during heating and unscrewing the threaded pins.

The system for the coolant supply on tool holders to DIN ISO 7388 makes it possible to combine the common forms of coolant supply into one machine-side tool body of **Form AD/AF**.


The system makes it possible to combine the following designs:

- Form AD: Central coolant supply via through bore (normal setting)
- Form AF: Central coolant supply via collar

To adjust the tool holder to the type of coolant supply on the machine, it is sufficient to adjust the position of two threaded pins. The threaded pins (secured with thread locking compound) seal off the bore for the alternative coolant supply. WTE After-sales Service is also at your disposal for the changeover.

5.3.1 Normal setting Form AD or JD to DIN ISO 7388

Unless otherwise indicated in the purchase order, the tool holders are delivered in Form AD.

Fig. 14: Normal setting of the coolant supply

5.3.2 Change over to Form AF or JF

Change over of the normal setting to coolant supply Form AF.

WARNING

Risk of burns from hot threaded pin area!

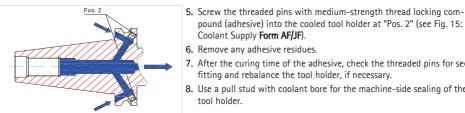
Serious burns and injuries can occur during heating and unscrewing the threaded pins.

- → Always wear ISO protective gloves when heating and unscrewing the threaded pins.
- → After heating, wait until the heated threaded pin area has cooled down.

Risk of explosion during heating of the hydraulic elements!

During heating of the part of the threaded pin, the chucking section and the pressure application areas can become hot and cause the hydraulic chuck to become deformed or to burst explosively. Hot oil or oil vapour can escape and metal slivers can then fly around uncontrolled and cause serious injuries to the operator.

- → Heat only the area of the threaded pin.
- → Carry out heating only with the hydraulics in the unclamped position.
- → Have the modification carried out by WTE After-sales Service.
 - 1. Ensure that the area of the hydraulics is cooled adequately.
 - Heat the threaded pins or the threaded pin area until the threaded pins can be unscrewed.



WARNING

Risk of burns from hot threaded pin area!

- → After heating, wait until the heated threaded pin area has cooled down.
- **3.** Unscrew the threaded pins using an hex-wrench 2.5.
- 4. Remove the adhesive residues from the threaded pins and threaded bores.

pound (adhesive) into the cooled tool holder at "Pos. 2" (see Fig. 15: Coolant Supply Form AF/JF).

- 6. Remove any adhesive residues.
- 7. After the curing time of the adhesive, check the threaded pins for secure fitting and rebalance the tool holder, if necessary,
- 8. Use a pull stud with coolant bore for the machine-side sealing of the tool holder

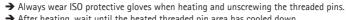
Fig. 15: Coolant Supply Form AF/JF

RESULT

Coolant supply is changed over to Form AF/JF.

5.3.3 Change over to Form AD or JD

Change over of the coolant supply from Form AF to Form AD.



WARNING

Risk of burns from hot threaded pin area!

Serious burns and injuries can occur during heating and unscrewing the threaded pins.

 Heat the threaded pins or the threaded pin area until the threaded pins can be unscrewed.

WARNING

Risk of burns from hot threaded pin area!

- → After heating, wait until the heated threaded pin area has cooled down.
- 2. Unscrew the threaded pins using an hex-wrench 2.5.
- 3. Remove the adhesive residues from the threaded pins and threaded bores.
- Screw the threaded pins with medium-strength thread locking compound (adhesive) into the cooled tool holder at "Pos. 1" (see Fig. 16: Coolant Supply Form AD/JD).
- 5. Remove any adhesive residues.
- After the curing time of the adhesive, check the threaded pins for secure fitting and rebalance the tool holder, if necessary.
- Use a pull stud with coolant bore for the machine-side sealing of the tool holder.

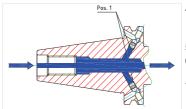


Fig. 16: Coolant Supply Form AD/JD

RESULT

Coolant supply is changed over to Form AD/JD.

6 Care and maintenance

- Protect the hydraulic chuck against corrosion during storage.
- Ensure that the hydraulic chuck is stored in the unclamped position.
- The clamping screw is to be cleaned and re-lubricated at regular intervals, depending on the operating and ambient conditions and in the event of frequent loosening and tightening.
- If the stop screw for axial tool length adjustment is clamped frequently, it must be cleaned and lubricated at regular intervals.
- Repairs may only be performed at WTE.
- Instructions for cleaning in a washing facility:
 - Clean the hydraulic chuck only in the unclamped position.
 - The clamping screw may only be clamped or relieved at room temperature.
 - The washing temperature must not exceed 80 °C.
 - After cleaning, regrease the clamping screw.

7 Disposal

Once the hydraulic chuck reaches the end of its service life, it must be disposed of with due care for the protection of the environment. The hydraulic chuck can also be sent to WTE for proper disposal.

Bestellnummer / Order number: 10148518

Montage- und Betriebsanleitung | HPH - High Performance Holder Installation and Operating Instructions | HPH - High Performance Holder WTE Präzisionstechnik GmbH, Germany

Gültig für: / Applies for:
4. Auflage August 2017 / 4th issue August 2017

© WTE Präzisionswerkzeuge GmbH

Kein Teil dieser Anleitung darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Zustimmung der Firma WTE Präzisionswerkzeuge GmbH, Ehrenfriedersdorf, Germany reproduziert oder unter Verwendung elektronischer Systeme verarbeitet werden.

No part of this manual is allowed to be copied or processed using electronic systems, in any form (print, photocopy, microfilm or any other method) without the written approval of WTE Präzisionswerkzeuge GmbH. Ehrenfriedersdorf, Germany.

Alle in diesem Handbuch genannten Bezeichnungen von Erzeugnissen sind Warenzeichen der jeweiligen Firmen. All the product names stated in this manual are trademarks of the related granisations.

Technische Änderungen vorbehalten.

Vertrieb/Distribution

WTE Präzisionstechnik GmbH Fischerstr. 19 / Zwingerstrasse D-87435 Kempten Tel. +49 831 57012-0 Fax +49 831 57012-30 www.wte-tools.de info@wte-tools.de

Fertigung/Produktion Reparaturservice/Repair service

WTE Präzisionstechnik GmbH Gewerbegebiet an der B95, Nr. 2a D-09427 Ehrenfriedersdorf